Studies of Thin Metal Silicides on Silicon (111)

Ian Matthew Scott

Submitted for the Degree of Doctor of Philosophy

University of York

Department of Physics

September 2004

Abstract

Abstract

This work describes the study of RE/Si(111) (RE – rare earth) and Fe/Si(111) surfaces by means of medium energy ion scattering (MEIS), scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS).

The Tm/Si(111) surface has been studied by means of MEIS. Data has been obtained from the 1×1 surface reconstruction formed at monolayer rare earth coverage. The data have been compared to simulations for a model based on the known structures of other RE silicides. The structure of the Tm silicide formed has been seen to fall into this class of structure. This investigation has led to a re-evaluation of the determination of the structural parameters for this model. A trend in the structural parameters has been revealed across the rare earth series.

The electronic structure of the rare earth silicide surface has been investigated. STS has been performed on the Ho silicide 1×1 surface. A lack of distinction between inequivalent sites has been observed and the data found to be in broad agreement with what is known of the electronic structure of these RE silicides.

A MEIS investigation has been made of the initial growth of Fe on the Si(111) 7×7 surface. Two phases have been found to form depending on anneal temperature. At anneal temperatures of around 300 °C a 1×1 phase is formed and at higher anneal temperatures a 2×2 phase is found. Data have been obtained from three scattering geometries. The data indicate that both phases are structurally very similar. A CsCl-type structural model is proposed, the 2×2 phase being formed by a Si adatom overlayer.

The use of the RE silicide as a growth template has also been briefly investigated by MEIS. The deposition of Fe onto the Ho silicide surface has been found to disrupt the structure and progressive annealing failed to reorder the system.

Contents

	Contents		3
	List of Fig	ures	8
	List of Tab	les	
	Acknowled	dgements	19
	Declaration	n	20
	Publicatior	18	20
1	Introdu	ction	
•	Incloud		
	1.1 The	e Surface	21
	1.2 Teo	chniques of Surface Science	23
	1.2.1	Scanning Tunnelling Microscopy	24
	1.2.2	Low Energy Electron Diffraction	24
	1.2.3	Reflection High Energy Electron Diffraction	26
	1.2.4	Medium Energy Ion Scattering	26
	1.2.5	Surface X-Ray Diffraction	27
	1.2.6	X-Ray Photoelectron Spectroscopy	27
	1.2.7	Ultraviolet Photoelectron Spectroscopy	27
	1.2.8	Auger Electron Spectroscopy	
	1.2.9	Electron Energy Loss Spectroscopy	29
	1.2.10	Surface Extended X-ray Fine Structure	
	1.3 Me	etal–Semiconductor Interfaces	31
	1.4 Ma	aterials Studied	33
	1.4.1	Two Dimensional Rare Earth Silicides	33
	1.4.2	Iron Silicides	35

	1.4.3	Metal Growth on 2D Rare Earth Silicides	36
Ref	Terences		36
2 Exp	perim	ental Aspects	41
2.1	The	Daresbury MEIS Facility	41
2.2	Sca	nning Tunnelling Microscopy	44
	2.2.1	General Principle	44
	2.2.2	Theory	47
	2.2.3	Scanning Tunnelling Spectroscopy	50
	2.2.4	Apparatus	51
2.3	Lov	v Energy Electron Diffraction	53
Ref	erences		58
3 Me	dium	Energy Ion Scattering	60
3.1	Intr	oduction	60
3.2	The	Technique of MEIS	61
	3.2.1	Shadowing and Blocking	61
	3.2.2	Kinematic Scattering	64
3.3	Sim	ulation of Scattering Curves	69

3.3.1 Hitting and Detection Probabilities	6	5	9)
---	---	---	---	---

- 3.3.2 Calculation of Probabilities: The Standard Method......713.3.3 Calculation of Probabilities: Tromp and van der Veen's Method
- 72 Calculation of Probabilities: Tromp and van der Veen's Method

3.3.4	Connection of Ingoing and Outgoing Ion Tracks	75
3.3.5	Tracking of Ions: The Single Row Approximation	76

3.3.6 Tracking of Ions: The Complete Crystal Method76

3.3	3.7 Multiparameter Simulations	78
3.4	Comparison of Simulation with Experimental Data.	78
Refere	ences	79

4 MEIS Investigation of Thulium Silicide82

4.1	Intr	oduction	.82
4.2	Exp	perimental Details	.82
4.3	Res	ults and Discussion	.87
4.3	8.1	Experimental Results and Analysis	.87
4.3	8.2	Computer Simulations	.89
4.3	8.3	Re-examination of Best Fit Model	.94
4.4	Cor	clusion	.97
Refere	ences		.99

5 Structural Trends and the Influence of R-

5.1	Int	roduction	
5.2	ΑI	Possible Trend	
5.3	The	e Possible Influence of the R-factor	
5.4	Re	-examination of MEIS Structural Results	
5.5	Exa	amining the R-Factor	
5.	5.1	The Influence of the Low Angle Blocking Dip	
5.	5.2	Alternative R-Factors	
5.	5.3	Performance of the R-factors	
5.	5.4	Errors in the Results	
5.	5.5	Conclusion	

5.	6	Cor	clusion	
R	eferer	nces		123
6 MI Si(1	EIS 11)	St)	udy of the Initial Growth of Fe on	125
6.	1	Intr	oduction	125
6.	2	Exp	erimental Details	
6.	3	Res	ults and Discussion	127
	6.3.	.1	Experimental Data	127
	6.3.	.2	Possible Models	
	6.3.	.3	Optimising Structural Parameters	
6.	4	Cor	clusions	
R	eferer	nces		140

7 Studies of the 2D Silicide Surface143

7.1 Int	roduction
7.2 ST	S of 2D Holmium Silicide143
7.2.1	Introduction
7.2.2	Experimental144
7.2.3	Scanning Tunnelling Microscopy145
7.2.4	Scanning Tunnelling Spectroscopy146
7.2.5	Spatially Resolved Spectra148
7.3 Ini	tial MEIS Study of Fe Growth on 2D Holmium Silicide151
7.3.1	Introduction151
7.3.2	Experimental151
7.3.3	Results and Discussion152

7.	.4	Conclusion	155
R	eferer	nces	155
8 Co	oncl	usion	158
8.	.1	MEIS Study of Thulium Silicide	158
8.	.2	Structural Trends in 2D Silicides	159
8.	.3	R-factor Analysis of MEIS Data	160
8.	.4	Iron Growth on Si(111)	161
8.	.5	Studies of the Silicide Surface	162
	8.5.	.1 Iron Growth on 2D Silicides	162
	8.5.	.2 STS of 2D Silicide	162
8.	.6	Future Work	163
Gloss	sary.		165

List of Figures

List of Figures

Figure 1.1: Simplified side view of a) a surface relaxation in which the atomic
spacing changes near to the surface; b) a surface reconstruction, in which
the atomic arrangement reconfigures to produce a new two-dimensional unit
cell
Figure 1.2: The Auger process. A high energy electron removes a core level
electron from the atom (a), leaving an excited state (b). The atom relaxes via
a less tightly bond electron filling the core level hole. The energy liberated
causes the ejection of a third, Auger electron (c)28
Figure 1.3: Formation of a Schottky barrier, Φ_{SB} , for an n-type semiconductor in
contact with a metal. The Schottky barrier forms, and the junction is
rectifying, if the metal wor function, ϕ_m , is greater than the semiconductor
workfunction, ϕ_s . E_v is the top of the valence band, E_c the bottom of the
conduction band and E_f the Fermi level. The band gap of the semiconductor,
E _g is also indicated
Figure 1.4: Structure of the 2D RE silicides. The RE forms a single atomic layer
situated in T4 sites above the bulk Si. The silicide is terminated by a bulk-
like Si bilayer, rotated by 180° with respect to the bulk. Top: Side view.
Bottom: Top view (i.e. along the surface normal). Inset: Ball and stick
model of the surface
Figure 2.1: Schematic diagram of the Daresbury MEIS facility beam line. Ions
are produced by a duoplasmatron source and accelerated to around 100 keV.
The ion beam is then focused and collimated before entering the scattering
chamber41
Figure 2.2: Schematic diagram of the Daresbury MEIS facility user end station.
The ion beam enters at the main scattering chamber. Sample preparation is
performed in a separate chamber and sample storage and fast entry is also
available42

Figure 2.3: The torodial electrostatic analyser and 2D detector produce the 2D
data sets in MEIS experiments. Ions entering the detector are bent through
90° before hitting a set of channel plates which amplify the charge so it may
be detected by the 2D detector plate
Figure 2.4: The general operation of the scanning tunnelling microscope in
constant current mode. As the tip is scanned across the surface its z-position
is adjusted to maintain a constant tunnelling current. This results in the tip
following the contours of the surface45
Figure 2.5: The model tip used in the calculations of Tersoff and Hamann [13,
14]. The tip is taken as a spherical potential well of radius R, centred at \mathbf{r}_0 a
distance d above the surface47
Figure 2.6: Qualitative description of the reciprocity principle. Probing surface s
states with a tip d state is equivalent to probing d states with a tip s state. 49
Figure 2.7: Bias condition dependence of STM imaging, in the case of the
Si(111) 7×7 surface. (a) Unoccupied states with the sample biased at $+1.5$
V. (b) Occupied states with the sample biased at -1.5 V. The unit cell is
marked in each case. Note that in the case of (b) a difference is clear
between the faulted and unfaulted half of the unit cell, whilst in (a) the two
halves appear the same. From Avouris & Wolkow [16]50
Figure 2.8: Schematic diagram of the STM 1 system. The STM is housed in a
UHV side chamber attached to a UHV sample preparation chamber
equipped with LEED, AES and deposition sources
Figure 2.9: Schematic diagram of AFM/STM systems used. The UHV STM side
chamber may be isolated from the main UHV sample preparation chamber.
Samples may be quickly exchanged in and out of the system using a load
lock
Figure 2.10: Simple diffraction in ID. Constructive interference occurs when the
Bragg condition is met, i.e. path difference $d=n\lambda$, λ being the electron
wavelength and $n=2,-1,0,1,2,3,$
Figure 2.11: The Ewald sphere for elastic scattering in 2D. The bragg condition

List of Figures

Fig	are 3.5: The energy loss due to inelastic scattering becomes greater the deepe
	the ion penetrates. An ion entering the crystal with energy E_0 and being
	scattered at a depth d from the surface exits with energy given by Equation
	3.9
Fig	ure 3.6: Basic double alignment scattering. Open circles indicate equilibrium
	positions of atoms, filled circles the thermally displaced positions in the
	crystal snapshot. The ion enters parallel to the z_1 -axis, scatters from atom z_1
	and exits parallel to the z ₂ -axis
Fig	are 3.7: Schematic of the standard scheme for determining hitting
	probabilities. The ion enters at \mathbf{r}_0 and scatters from each atom in turn before
	colliding with the atom located at $\mathbf{r}_0 + \Delta \mathbf{n}$. Note the z'-axis is the z-axis of
	the Tromp and van der Veen method
Fig	ure 3.8: Schematic of Tromp and van der Veen's scheme for determining
	hitting probabilities. The ion enters along the z-axis and is scattered by eac
	atom in turn until passing through the i^{th} layer at $\Delta n,\delta r_i$ from the i^{th} atom.
	This scheme is related to Barrets by a simple coordinate transform (see
	Figure 3.7)
Fig	are 3.9: In the complete crystal method an auxiliary lattice can be constructe
	by grouping atoms with (nearly) identical x-, y- or z-coordinates. This can
	then be used to track the ion through the crystal. As each atom occupies on
	auxiliary lattice point, and each lattice point contains zero or one atoms,
	only four auxiliary lattice points need be checked for potential collision

layer located in T4 sites above the bulk Si. The silicide is terminated by a bulk-like Si bilayer (Si₁ and Si₂) which is rotated by 180° with respect to the bulk. a) side view, b) the view along the surface normal (i.e. top view).83 Figure 4.2: The origin of the blocking dips in the Tm signal in the two scattering geometries indicated. a) $[\bar{1} \ 00]/[\bar{1} \ 11]$ b) $[1\bar{1} \ \bar{1} \]/[100]$. The arrows indicate the origin of the blocking features labelled in Figure 4.5. Refer to Figure 4.1 for further details of the structure (note that in this figure only those atoms within the scattering plane are shown). Notice that ε depends only on Si₂..85

Figure 4.7: Comparison between experimental data and the simulated scattering
curve for the initial structural solution for 2D Tm silicide (note that for ease
of display the curves have been corrected for the fall off in counts due to the
Rutherford scattering cross-section). The experimental data has been freely
scaled to the simulation. (a) $[\overline{1} \ 00]/[\overline{1} \ 11]$ (b) $[1\overline{1} \ \overline{1} \]/[100]$. The labelling of
blocking dips refers to Figure 4.2. Note the poor match of the 57° (ϵ)
blocking feature in the $[\overline{1} \ 00]/[\overline{1} \ 11]$ geometry
Figure 4.8: Comparison between experimental data and the simulated scattering
curve for the final model for two-dimensional Tm silicide (again corrected
for Rutherford scattering cross-section). The experimental yield is freely
scaled to the simulation. (a) $[\bar{1} \ 00]/[\bar{1} \ 11]$ (b) $[1\bar{1} \ \bar{1} \]/[100]$. The ~57° (ϵ) dip
position is now visually a better fit95
Figure 4.9: Ball and stick representation of the Tm 2D silicide surface, showing
the bond lengths of Table 4.296
Figure 4.10: Comparison between experimental data and simulation for the "by
eye" fit, corrected for Rutherford scattering cross-section. (a) $[\bar{1} 00]/[\bar{1} 11]$
(b) $[1\overline{1} \ \overline{1}]/[100]$. The ~57° (ε) dip position has been further improved98
Figure 5.1: (a) RE–Si bond lengths in bulk rare earth silicides. (b) Ionic radii of
rare earth metals. Both show a decreasing trend across the series102
Figure 5.2: Comparison of experimental MEIS scattering curves for 2D rare earth
silicides. This feature is due to the blocking of scattered ions by the Si_2
atoms and directly reflects the Si_2 -RE bond length (the blocking dip
labelled $\boldsymbol{\epsilon}$ in the previous Chapter). Curves have been scaled to an arbitrary
yield and then offset for clarity104
Figure 5.3: Comparison of experimental MEIS data for 2D rare earth silicides.
The blocking dip shown is due to blocking of scattered ions by the Si_1 atoms
(the blocking dip labelled δ in the previous Chapter). Curves have been
scaled to a common arbitrary yield and then offset for clarity

Figure 5.4: Contribution of each point to the total R-factor. Note the significance
of the lowest angle dip. The dashed line shows similar contributions for the
simulation of the final solution110
Figure 5.5: Contribution of each point to the total R-factor when the Rutherford
scattering cross section is not taken into account. This eliminates the added
weight given to lower angles due to the additional number of counts. The
depth of the lowest angle dip is still the most important factor
Figure 5.6: Contributions to the R-factor when discounting the lowest angle dip
from the calculation of the R-factor. This produces a much better fit to the
higher angle dips than that shown in Figure 5.4 and Figure 5.5112
Figure 5.7: Comparison of (a) the original Tm silicide MEIS scattering curve and
(b) the "flipped" version. The inset shows a typical LEED I–V curve [10].
The Pendry R-factor was originally designed to deal with peaks rather than
dips. The flipped data may be considered qualitatively more like the LEED
data for which the Pendry R-factor is standard117
Figure 5.8: The structural trend in the Si_2 -RE bond length across the rare earth
series. This plot is derived from the structural model determined using R_{Pflip} .
Other methods of determining the best fit model show is a similar trend. 122
Figure 6.1: Bulk phase diagram for Fe silicide. After von Kanel et al. [15]. The
FeSi system exhibits many phases in the bulk dependent on the precise
Fe:Si composition and sample preparation
Figure 6.2: Typical MEIS spectra from the FeSi 1×1 phase. Left to right:
[1 00]/[1 11], [11 0]/[100], [11 1]/[100]. The Fe signal shows clear
blocking dips128
Figure 6.3: Typical MEIS spectra from the FeSi 2×2 phase. Left to right:
$[\bar{1} \ 00]/[\bar{1} \ 11]; [1\bar{1} \ 0]/[100]; [1\bar{1} \ \bar{1}]/[100].$ The spectra are very similar to
those observed for the 1×1 phase (Figure 6.2)

Figure 6.4: Comparison of scattering curves from the 1×1 and 2×2 phases. [$\overline{1}$
$00]/[\bar{1} 11]$ geometry. The scattering curves from the two phases are
extremely similar, indicating that their structures are very alike. See also
Figure 6.5 and Figure 6.6
Figure 6.5: Comparison of scattering curves from the 1×1 and 2×2 phases. [11]
0]/[100] geometry. See also Figure 6.4 and Figure 6.6
Figure 6.6: Comparison of scattering curves from the 1×1 and 2×2 phases. [1 $\overline{1}$
$\overline{1}$]/[100] geometry. See also Figure 6.4 and Figure 6.5
Figure 6.7: The proposed structural model for the initial Fe silicide growth. Side
view showing the scattering plane. Note that the 2×2 phase is shown; the
1×1 phase is proposed to be identical but without the ordered Si overlayer,
Si_{ad} . Inset: Ball and stick model of the surface—the model on the right has
the bulk Si removed for clarity134
Figure 6.8: Origin of the blocking features. Note how the adatoms are mainly
shadowed from the scattered ions. Red lines indicate the incident ion
directions, green lines the origin of the observed blocking dips Top: [$\overline{1}$
00]/ $[\bar{1} 11]$ Bottom: $[1\bar{1} 0]/[100]$ and $[1\bar{1} \bar{1}]/[100]$ —as ions are detected
around [100] in both cases the same blocking dips are observed, although at
different scattering angles
Figure 6.9: Ball and stick model of the surface, showing the bond lengths
detailed in Table 6.1
Figure 6.10: Comparison of simulated and experimental scattering curves for the
final structural model. The $[\bar{1} \ 00]/[\bar{1} \ 11]$ geometry
Figure 6.11 Comparison of simulated and experimental scattering curves for the
final structural model. The $[1\overline{1} 0]/[100]$ geometry
Figure 6.12: Comparison of simulated and experimental scattering curves for the
final structural model. The $[1\overline{1} \ \overline{1}]/[100]$ geometry
Figure 7.1: Theoretical band structure of RE 2D silicide [4]. Note the hole pocket
at the $\overline{\Gamma}$ point

Figure 7.2: Atomically resolved STM image of the 2D Ho silicide surface.		
Imaged aquired at a bias voltage of 2V, tunnelling current 2nA. \sim 10 nm ×		
~3 nm		
Figure 7.3: Inequivalent sites on the 2D silicide surface. Top: atomically resolved		
STM image, bias voltage 2 V, tunnelling current 2 nA. \sim 5.0 nm × \sim 3.6 nm.		
Bottom: Schematic top view of the surface		
Figure 7.4: Typical plot of tunnelling current, I, versus bias voltage, V, averaged		
from equivalent sites on the atomically resolved 2D silicide surface close to		
zero applied voltage147		
Figure 7.5: The LDOS is better represented by a plot of (dI/dV)/(I/V) versus bias		
voltage. Arrowed are features corresponding to bands in the 2D silicide		
band structure		
Figure 7.6: STS spectra from three inequivalent sites on the atomically resolved		
2D Ho silicide surface. Arrowed are features corresponding to hands in the		
2D no sincide surface. Anowed are readires corresponding to bands in the		
2D filo silicide band structure		
2D filo sincide sufface. Afrowed are reatures corresponding to bands in the 2D silicide band structure		
2D filo shielde sufface. Allowed are readiles corresponding to ballds in the 2D silicide band structure		
 2D file shielde sufface. Afrowed are readiles corresponding to ballds in the 2D silicide band structure		
 2D file shielde sufface. Affowed are features corresponding to ballds in the 2D silicide band structure		
 2D file shielde sufface. Affowed are features corresponding to ballds in the 2D silicide band structure		
 2D file shielde sufface. Affowed are features corresponding to ballds in the 2D silicide band structure		
 2D filo shielde sufface. Allowed are readiles corresponding to balds in the 2D silicide band structure		
 2D filo shielde sufface. Allowed are readiles corresponding to bands in the 2D silicide band structure		
 2D file surface. Arrowed are readiles corresponding to bands in the 2D silicide band structure		
 2D file sincide surface. Affowed are readiles corresponding to balds in the 2D silicide band structure		
 2D no shielde surface. Allowed are realities corresponding to balds in the 2D silicide band structure		
 2D filo silicide surface. Allowed are relatives corresponding to bands in the 2D silicide band structure		

Figure 8.1: Side view of the Tm 2D silicide structure indicating the bond lengths.		
Bulk Si has been omitted for clarity. The silicide consists of a single RE		
layer beneath a bulk-like Si bilayer. The bilayer is rotated by 180 $^\circ$ with		
respect to the bulk		
Figure 8.2: Side view of the Fe silicide, showing the 2×2 Si adatom layer and		
indicating bond lengths. Bulk Si has been omitted for clarity. The silicide is		
a CsCl-type structure with, in the case of the 2×2 phase, an additional layer		
of Si adatoms in a 2 × 2 arrangment		

List of Tables

List of Tables

Table 4.1: Structural parameters for the initial best model for the Tm silicide
under discussion. The Si_1 -Tm bond length is thought to be underestimated
while the Si ₁ –Si ₂ bond length is overestimated
Table 4.2: Structural parameters for the final model for 2D Tm silicide
Table 4.3: Structural parameters determined from a "by eye" fit
Table 5.1: Published structural results for two-dimensional rare earth silicides.
Refer to Figure 4.1 for atomic labels. Techniques other than MEIS show a
longer Si ₂ –RE bond length for a given rare earth
Table 5.2: Bond lengths calculated from purely geometrical considerations (i.e.
the measured angular position of the relevant blocking dip). Also shown for
comparison are the published bond lengths
Table 5.3: Revised structural parameters for 2D rare earth silicides and the
corresponding subjective "by eye" fits. A general trend for a decrease in the
Si ₂ –RE bond length with increasing atomic number emerges108
Table 5.4: Vertical separations between the Si_1 and RE atoms as found in the
original published results, from a revised study of the data and from fitting
by eye. The by eye results show that it is possible to subjectively fit
blocking dips of this form109
Table 5.5: Comparison of the best fit models derived from comparing simulated
and experimental blocking curves using a variety of R-factors. Also shown
are the best subjective visual fits ("By Eye"). A trend in the Si_2 -RE bond
length is apparent in the results from a number of comparison methods;
notably the "by eye" comparison, R_{min} , R_{Pflip} and R_{χ} -refined
Table 6.1: Structural parameters for the final model. See Figure 6.7 for labels.136

Acknowledgments

Acknowledgements

It is with pleasure that I may take this opportunity to thank those who have been of immeasurable help during the course of this work. There are inevitably far too many to fully list but some are deserving of particular mention:

Firstly I must deeply thank my supervisor, Dr. Steve Tear, for his unending patience, wisdom, encouragement and guidance during my research. Undoubtedly this work would not exist but for his expert help.

I must also thank Dr. Paul Bailey and Dr. Tim Noakes of the Daresbury MEIS laboratory for their guidance and assistance in the work performed there.

Members of the University of York Surface Physics Group, both past and present, have always been available to suggest new ideas, offer encouragement and generally share the experience of working as part of an experimental physics group. I am grateful for all they have offered and hope I contributed in return.

In a similar vein the running of a successful laboratory relies on its technical support and I could not have hoped for better than Dave Coulthard, Richard Armitage, Pete Durkin and the rest of the Physics Department's excellent technical staff.

On a final personal note, none of this would have been possible without Rachel. She has been my strength and beacon of light through darkness, for which I am reduced to a simple, inadequate, thank you.

Declaration

The work presented in this thesis is that of the author except where the contributions of others have been acknowledged explicitly in the text or by means of references. No part of this work has been presented for any other qualification at this or at any other university.

Publications

Growth and electronic structure of holmium silicides by STM and STS, E.W. Perkins, I. M. Scott and S. P. Tear, *Surface Science* **578** 80 (2005)