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1 Medium Energy Ion Scattering 

3.1 Introduction 

Medium energy ion scattering is a refinement of the perhaps better known 

technique of Rutherford back scattering but offers improved energy and angular 

resolution [1-3]. This allows MEIS to achieve much higher depth resolution as 

well as forming an ideal tool for the study of surface and near surface structure. 

The technique has been successfully applied to a number of systems [4-18]. 

MEIS is closely related to the techniques of LEIS and HEIS [1, 3, 19, 20]. In all 

these techniques energetic ions (in the case of MEIS usually H+, He+ or Li+) are 

made to impact the surface under investigation and the scattered ions are 

detected. MEIS has advantages over both LEIS and HEIS when applied to 

studies of surfaces. The energy of the ions involved (~100 – 500 keV) are lower 

than those of HEIS (which are typically ≥1 MeV). The main advantage of this is 

that the shadow cone radius (see below) is larger, and hence the technique is 

more surface sensitive. The lower energies also allow for improved energy 

resolution when detecting the scattered ions, which equates to better depth 

resolution. Despite these differences HEIS and MEIS are extremely similar, and 

the physics underlying one technique may be applied to the other. LEIS, on the 

other hand, employs ions of much lower energy (a few keV). LEIS suffers from 

neutralization effects of the incident ions. Also at such low energies the 

scattering potential is not well known, unlike the case in MEIS and HEIS. The 

low energy also makes the technique extremely surface sensitive, which may be 

advantageous but might also be a hindrance in the study of near surface buried 

interfaces. LEIS does have the further advantage that it does not require the 

dedicated facilities necessitated by MEIS and HEIS and can indeed be performed 

in a standard laboratory. 



Chapter 3: Medium Energy Ion Scattering 

MEIS also has advantages over other techniques such as LEED, mainly that it 

produces data in real space. Also, as the scattering is kinematic, the data reflects 

real atomic positions, which is not necessarily the case with other real space 

imaging techniques such as STM. MEIS also has the advantage over STM in that 

it can provide information about relatively deep layers rather than just the surface 

or very near surface region. If the elements present are separated enough in terms 

of mass then the ions scattered from each can be resolved. This can greatly aid in 

the interpretation of the MEIS data as shall be seen in later chapters. 

3.2 The Technique of MEIS 

As the scattered ions have energies of around 100 keV their speed is much 

greater than that of the atom’s movement due to crystal phonon vibrations, so the 

ions essentially see a frozen snapshot of the crystal. This allows the scattering to 

be considered as a sequence of kinematic scattering events between ion and 

crystal atomic nucleus [3, 19, 21]. 

3.2.1 Shadowing and Blocking 

MEIS generally gains its surface sensitivity from the practice of “shadowing”. 

The ionic beam is aligned along a major crystallographic direction (in practice 

the crystal is rotated about the beam). This shadows atoms deeper in the crystal, 

further along the “row”, as shown in Figure 3.1. 

The shadowed volume forms a cone, the radius of which increases with distance 

from the shadowing atom. For a Coulomb potential this radius is given by 
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where Z1 and Z2 are the atomic numbers of ion and target, E is the ion energy and 

l is the distance from the atom. While equation 3.1 gives an estimate of the size  
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Figure 3.1: Shadowing. By aligning the ion beam along a low index 

crystallographic direction, the atoms deeper in the crystal are effectively 

shadowed from the beam. 

of the blocking cone it neglects screening of nuclear charge. A more accurate 

description can be given by the Molière approximation [3, 21]. The radius of the 

shadow cone then becomes 

 RRM ξ=  (3.2) 

ξ is the screening potential, which takes a value less than one. 

Shadowing has the overall effect that the illumination of the crystal is restricted 

to a certain depth, although thermal vibrations mean that the shadowing is not 

ideal and deeper layers do provide some contribution to the backscattered yield. 

This means that the scattered ions are surface sensitive, with the added advantage 

that buried interfaces close to the surface can still be probed. Careful selection of 

scattering geometry can therefore be used to dictate the number of layers 

exposed. 

Although shadowing is useful, further information about the crystal under 

investigation can be gained by the use of “double alignment”. This essentially 

uses the same technique as shadowing but to produce blocking of the scattered  
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Figure 3.2: Blocking. Scattered ions are blocked in their path back out of the 

crystal by atoms closer to the surface in a process analogous to the initial 

blocking. A shift in atomic position results in a shift in the angular position of a 

blocking feature. 

ions (i.e. scattered ions are detected around another low index direction). There is 

then a drop in scattering yield at characteristic angles where the scattered 

beamintersects atoms on its way out of the crystal, as demonstrated in Figure 3.2. 

A relaxation of the surface layer will then produce a change in the scattering 

angle of a blocking feature as Figure 3.2 shows. Additional blocking features 

may also be present due to reduced shadowing of deeper layers. This means that 

detecting the scattering yield as a function of angle gives real space geometrical 

information regarding the crystal atomic positions.  
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Figure 3.1: The kinematic factor  k2 as a function of scattering angle for two 

target masses of 28 amu and 168 amu, calculated for the case of H+ ions. 

3.2.2 Kinematic Scattering 

As mentioned above, the scattering of the ion from an atomic nucleus within the 

crystal can be treated as a kinematic event. Considering elastic scattering 

between two bodies, an ion with initial energy E0 and mass m1 scattered from a 

target of mass m2 over a scattering angle θ (see Figure 3.2), will scatter with 

energy given by 
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k2 is known as the kinetic energy loss factor and it has important consequences 

for MEIS. A plot of k2 as a function of scattering angle in the case of H+ ions is 

shown in Figure 3.3 for two different target masses, m2
(a) and m2

(b). The 

kinematic factor for the two target masses becomes increasingly different with 

increasing scattering angle. In practice this means that for sufficiently high 

scattering angles MEIS has the power to resolve elements of different mass  
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Figure 3.4: An example MEIS spectra (taken from the Tm 2D silicide system, see 

Chapter 4 for details). This spectrum demonstrates many of the features of a 

typical MEIS spectrum. The signals from scattering from the Si and Tm are well 

separated due to the mass difference between the two elements. The Tm 

scattering signal shows the characteristic fall in counts at increasing scattering 

angle due to the Rutherford scattering cross-section. The drop in energy with 

increasing scattering angle is most evident in the Si scattering signal. The Tm 

scattering signal shows clear evidence of ions being blocked at specific 

scattering angles. The detection around a major crystallographic direction is 

evidenced by the bulk blocking feature. 

Original in colour 
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within the crystal. Also, for a given mass, k2 decreases with increasing scattering 

angle. This results in ions scattered through higher angles having lower energies. 

Both of these effects are shown in the example MEIS spectrum, Figure 3.4. 

Another factor affecting the scattering data from a MEIS experiment is the fall 

off in the number of counts with increasing scattering angle. This is a 

consequence of the Rutherford scattering cross-section, dσ/dΩ. The scattered ion 

flux I over a solid angle ∆Ω is given by 
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where for the incident ion flux Q, N is the number of atoms contributing to the 

backscattering. The Rutherford scattering cross-section is given by 
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F is a factor to correct for screening of the target nucleus by electrons, Z1 and Z2 

are the ion and target atomic numbers, E is the incident energy and g(θ, M1, M2) 

is a transformation from the centre of mass to laboratory frame.  

Equations 3.4 and 3.5 shows that there is a strong dependence in the scattered ion 

flux with scattering angle. The equations also show that MEIS is more sensitive 

to heavier elements, as the Rutherford scattering cross-section, and hence 

detected ion flux, is proportional to the square of the atomic number. Again this 

can be seen in Figure 3.4. 

A final factor when considering MEIS spectra is the energy loss due to inelastic 

scattering between the ion and electrons. The rate of this energy loss is known as 

the stopping power. The stopping power depends on the material and the ion 

energy, which of course decreases due to the inelastic collisions as the ion moves 

through the crystal. The stopping power is therefore not constant as the ion 

moves through the sample. However, in MEIS the layers are normally thin 
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enough and inelastic loses small enough that the stopping power can be taken to 

be constant before backscattering and then taken to be a different constant after 

the backscattering event. Taking this surface approximation that backscattering 

occurs close to the surface and inelastic losses are therefore small,  
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and 
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The inelastic energy loss per unit length normal to the surface is given by 
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where θ1 and θ2 are as defined in Figure 3.6. 

 

Figure 3.6: The energy loss due to inelastic scattering becomes greater the 

deeper the ion penetrates. An ion entering the crystal with energy E0 and being 

scattered at a depth d from the surface exits with energy given by Equation 3.9. 

Therefore the energy of an ion scattered at a depth d will be 
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Equation 3.9 reveals that the energy scale is therefore a depth scale, as well as 

being a mass scale due to the elastic scattering. This means MEIS can also be 

used as a powerful depth profiling technique as well as for structural 

determination. 

MEIS data may therefore be considered in two ways. In the first the data is 

considered as a function of the energy of the scattered ions integrated over a 

given angular range. This acts as both a mass and depth scale. Second the data 

may be considered as a function of angle, the number of counts being integrated 

over a given energy range. This gives direct geometric information regarding the 

structure of the surface layers. Within this plot of counts as a function of angle 

there will be a dip in counts at scattering angles where ions have been blocked by 

surface atoms. The angular width of these dips is given by [1]: 
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Here s is the distance between the atom which scattered the ion and the atom 

which blocked the ion, E is the ion energy given by Equation (3.3), n is the 

power of the potential, A is the potential parameter and the factor c is given by 
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For a Coulomb potential Equation (3.11) reduces to  

 
2/1

Es

A
 4 







=ψ  (3.12) 

 
0

2
21

4

eZZ
A

πε
=  (3.13) 



Chapter 3: Medium Energy Ion Scattering 

Therefore the typical width of a blocking dip is a few degrees. 

3.3 Simulation of Scattering Curves 

Although it is possible to directly interpret MEIS data as described above, for a 

true quantitative structural analysis it is desirable to simulate the scattering of 

ions from a number of trial structures and compare these simulations with 

experiment. If nothing else then simple geometrical considerations, whilst 

providing a good starting point, neglect the effect of lattice vibrations which may 

introduce additional scattering as deeper layers are imperfectly shadowed. There 

may also be edge effects around the shadowing cones which can enhance the 

scattering yield at particular angles. Monte Carlo simulations are performed 

using a FORTRAN computer code known as VEGAS, developed by the FOM 

Institute [2, 19, 21, 22]. A brief description of the method by which the scattering 

is simulated is given here. 

3.3.1 Hitting and Detection Probabilities 

As mentioned above, the ions involved in MEIS are travelling with a speed 

approximately three orders of magnitude faster than the lattice vibrations of the 

atoms in the crystal, which allows a simple snapshot of the sample to be 

considered, the atoms “frozen” in their thermally displaced positions. The 

trajectory of the ion can then be modelled as a series of straight line segments 

between deflections.  

Figure 3.6 below shows the basic double alignment situation. The ion enters the 

crystal parallel to the z1-axis and passes a number of atoms before scattering 

from atom A. It then passes a number of atoms, exiting the crystal parallel to the 

z2-axis. Now if the intersection of ion beam and atom A at position ra has  
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Figure 3.6: Basic double alignment scattering. Open circles indicate equilibrium 

positions of atoms, filled circles the thermally displaced positions in the crystal 

snapshot. The ion enters parallel to the z1-axis, scatters from atom A and exits 

parallel to the z2-axis. 

probability P1(ra), and the probability of the ion being emitted from ra and being 

reaching the detector is P2(ra), then the double alignment probability of scattering 

from atom A at r a being detected is given by 

 ∫= aaaa rrrr d)(P)(G)(PP 2
a

1DA
a  (3.14) 

Ga(ra) being the Gaussian probability density for the thermal displacement of 

atom A. 

Hitting and detection probabilities are given by 

 ∫= aaa rrr d)(G)(PP a
11

a  (3.15) 

and 

 ∫= aaa rrr d)(G)(PP a
22

a  (3.16) 

respectively. Note that equation (3.16) arises due to the fact that the ion 

scattering is time reversible. i.e. the probability of detecting the ion scattered 

from atom A along the z2-axis is equal to the probability of an ion entering the 

crystal along the z2-axis being scattered from atom A. 

The double alignment probability can be very well approximated by 
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The hitting and detection probabilities can therefore be calculated independently 

and multiplied together to give the total double alignment probability. 

3.3.2 Calculation of Probabilities: The Standard Method 

Two methods are described in the literature for the calculation of the hitting and 

detection probabilities [21, 23]. They are shown by Tromp and van der Veen [21] 

to be equivalent.  

Figure 3.7 shows the scheme used in the so called standard method, originally 

due to Barrett [23]. The ion enters at position r0(x,y) and is subsequently 

scattered by atoms located at r1΄, r2´, ..., rn´. A collision occurs if the atom in 

plane n is located at r0 + ∆n. The probability density for such a track through the 

planes 1,...,n is given by 
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Integrating over all possible values of r0 and sets of {r1´, r2´, ..., rn-1´} gives 
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having substituted r j´= r0 + r j and dr j´= dr j as integration over r j is performed at 

constant r0. 

This integral has 2n integration factors and so must be solved numerically. 

Random values of r0 are chosen uniformly from a sufficiently broad area and the 

{ r j} chosen quasi-randomly from the Gj of the atoms. The track is then  
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Figure 3.7: Schematic of the standard scheme for determining hitting 

probabilities. The ion enters at r0 and scatters from each atom in turn before 

colliding with the atom located at r0 + ∆n. Note the z´-axis is the z-axis of the 

Tromp and van der Veen method. 

calculated and the probability density for a nuclear encounter, Gn(r0 + ∆n) is 

found. This is repeated for many ion tracks to give pn after appropriate 

normalisation. 

3.3.3 Calculation of Probabilities: Tromp and van der Veen’s Method 

The method proposed by Tromp and van der Veen [21] is related to that of 

Barrett by a simple coordinate transformation. There is, however, one important 

difference. Within the new formalism it is possible to calculate the hitting 

probabilities of atom i when it is located at a specific r i, something which is 
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impossible within the standard formalism. This enables double alignment 

geometries to be calculated with reasonable efficiency. 

Figure 3.8 shows the schematic for the new scheme. The probability that atom i 

is hit by the ion beam which impinges on the crystal along the z-axis is 

calculated as follows. The ion is deflected by atoms 1, 2, ..., i-1 at positions {r1, 

r2, ..., r i-1} before passing through the ith plane. In general it will not pass through 

this plane at r i but at a position δr i away. However, only the coordinates of the 

atoms relative to the incoming ion beam determine the deflection angles and  

 

Figure 3.8: Schematic of Tromp and van der Veen’s scheme for determining 

hitting probabilities. The ion enters along the z-axis and is scattered by each 

atom in turn until passing through the ith layer at ∆n, δri from the ith atom. This 

scheme is related to Barrets by a simple coordinate transform (see Figure 3.7).  
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hence the position at which the beam passes through plane i. If the atoms were 

located at {r1 - δr i, r2 - δr i, ..., r i-1 - δr i} and the beam entered the crystal at - δr i 

then it would pass through the ith plane at r i + δr i - δr i = r i and a collision would 

occur. 

The probability density for a collision at point r i is therefore given by the 

probability density for the atoms to occupy not { r1, r2, ..., r i-1} but { r1 - δr i, r2 -

 δr i, ..., r i-1 - δr i}. 

 ∏
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The probability density of hitting atom i at position r i is then the integral over all 

possible positions of the previous i - 1 atoms 
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The hitting probability of atom i is given by integration over all possible 

positions of atom i 

 ∫= iii rrr d)(P)(GP iii  (3.22) 

This can easily be shown to be equivalent to the standard method. Substituting 

r i´´ = r i - ∆n = -δr i into equation (3.21) and using dr i´´ = dr i as ∆n does not 

depend on r i gives 
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If r i´´ is renamed r0 then equation (3.23) is seen to be identical to equation (3.19) 

under the standard method, and the two formalisms are equivalent. 
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Again integration is performed by Monte Carlo methods. Uniform random values 

of { r1, ..., r i-1} are chosen and the value of r i chosen according to the Gaussian 

probability distribution. The ion track is determined and the probability densities 

for the shifted positions found. Averaging over many tracks produces the hitting 

probability. 

3.3.4 Connection of Ingoing and Outgoing Ion Tracks 

Equation (3.17) makes the approximation that the incoming and outgoing ion 

tracks are in fact not correlated. In reality of course there is a correlation, both 

sharing the same thermally displaced position of the scattering atom. Under 

normal circumstances this approximation does not cause problems. However, if 

the hitting probabilities are strongly varying with ra for positions close to atom 

a’s equilibrium position, then the approximation may result in a slight shift of the 

angular position of a blocking minima. 

The two tracks may be connected by using a combination of the methods of 

Barrett and Tromp and van der Veen as described in sections 3.3.1 and 3.3.2 

respectively. Barrett’s method is used for the calculation of the incoming tracks 

and then the interception with the final plane is used as the position of the target 

atom in a calculation for the (time reversed) outgoing track using the method of 

Tromp and van der Veen, causing the two tracks to intersect. This has the 

disadvantage that Tromp and van der Veen’s method results in a large number of 

ion tracks with low probability because they must be shifted to intersect the 

scattering position. 

In all the work reported in this thesis, simulations of blocking curves do not have 

ingoing and outgoing tracks connected. The reasoning behind this is two fold. 

First it is not expected that any significant error should be introduced by this 

approximation. The approximation is most likely to fail when the scattering atom 

lies at the edge of a shadow cone, a situation not encountered in this work. 

Second, from a practical point of view, the portion of the computer codes which 

allows such a connection does not correctly function as of this writing, so it is not 
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possible to specify the connection of ingoing and outgoing tracks within the 

simulations. 

3.3.5 Tracking of Ions: The Single Row Approximation 

In order to determine the hitting probabilities the ion track (i.e. the sequence of 

collisions) must be determined. If the shadow cone radius is suitably small 

enough that scattering between adjacent rows of atoms plays no role (i.e. the 

shadow cone is smaller than the distance between rows) then the single row 

approximation may be employed. The ion path is considered as a sequence of 

small angle deflections along the atomic row, the order of encounters simply 

being the order of atoms in the row. If the atomic rows are equivalent then 

periodic boundary conditions may be used.  

The single row approximation fails, however, if the ion can scatter between rows. 

This may occur, for instance, if the ion beam is not aligned, or aligned along a 

high index direction. Also surface relaxations can cause adjacent rows to be 

inequivalent so periodic conditions may no longer be applied. 

3.3.6 Tracking of Ions: The Complete Crystal Method 

To overcome the shortfalls of the single row approximation the VEGAS codes 

use the more sophisticated complete crystal method. The complete crystal is 

treated as a slab of the depth to be considered in scattering, constructed of 

periodically repeated building blocks which have the lateral dimensions of the 

n × m unit cell. If necessary two or more unit cells are combined to get a 

rectangular building block. The hitting probabilities are calculated as described 

above. The order of collisions is now lost and must be found for each ion 

individually. 

Whilst in principle it would be possible to determine the next collision partner by 

calculating the distance from the projected ion trajectory to all atoms within the 

block, this is prohibitively expensive in computational time. Instead an auxiliary  
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Figure 3.9: In the complete crystal method an auxiliary lattice can be 

constructed by grouping atoms with (nearly) identical x-, y- or z-coordinates. 

This can then be used to track the ion through the crystal. As each atom occupies 

one auxiliary lattice point, and each lattice point contains zero or one atoms, 

only four auxiliary lattice points need be checked for potential collision partners. 

lattice is formed by grouping the atoms within the block into sets with (nearly) 

identical x-coordinates, (nearly) identical y-coordinates and (nearly) identical z-

coordinates. These sets define x-, y- and z-planes, the intersections of which 

define the points of the rectangular auxiliary lattice. Each auxiliary lattice point 

is either empty or contains exactly one atom. Each atom within the original block 

is assigned to exactly one auxiliary lattice point. Now at most four atoms must be 

considered as potential collision partners at any time.  

Suppose that the ion beam is travelling primarily in the z-direction, as shown in 

Figure 3.9. Its path is constructed by the intersects with consecutive z-planes.  

Given a typical nearest neighbour distance of about 2 Å and a typical impact 

parameter of around 0.5 Å, the ion is close enough to no more than one atom, 

which means only four lattice points need be considered. 

Although it may seem restrictive to have to construct a rectangular auxiliary 

lattice, this has not been found to be a problem even for quite complex 

reconstructions [19]. 
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3.3.7 Multiparameter Simulations 

When evaluating hitting probabilities by the methods described above the 

majority of computational time goes into the calculation of the ion trajectories, 

whilst relatively little is used in evaluating the probabilities. When comparing 

simulations with experimental data it is often desirable to vary several 

parameters over a small range of values in order to determine the most 

appropriate model. This can be achieved in a relatively efficient manner by the 

realisation that the information regarding the equilibrium positions of the atoms 

and their thermal vibrations is hidden within the Gaussian distributions Gi. These 

distributions do not enter into the calculations until after the calculation of the 

ion trajectories. Therefore one set of ion trajectories may be used to determine 

the hitting probabilities for a range a slightly different equilibrium positions and 

thermal vibrations of the atoms without significant increase in computational 

time. A range of structural models may then be simulated in a so called 

“multicalc”, systematically varying atomic positions and/or vibrations between 

each model. This greatly accelerates the search for a structural solution, though 

care must be taken to ensure that parameters are not moved from the starting 

positions by too extreme an amount and that a sufficiently high number of ions 

are used. Experience has shown that an atomic shift of no more than ± 0.3 Å and 

an ingoing/outgoing ion flux of 100000/50000 ions is adequate in most 

situations. 

3.4 Comparison of Simulation with Experimental Data 

Angular cross sections through MEIS spectra produce a plot of scattering yield 

against scattering angle. Geometrical considerations may gave rise to a number 

of possible trial structures which are then simulated using the VEGAS code 

implementing the methods described above. The experimental cross sections are 

corrected for the effects of the Rutherford scattering cross section and the 

kinematic energy loss factor. The data may also be corrected for angular 

miscalibration of the TEA position by comparison of bulk blocking features to 

simulations of scattering from the bulk atoms of the crystal.  
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Experimental and simulated scattering curves are compared by use of an R-

factor. The R-factor which has become standard within the Daresbury 

community is a chi-squared R-factor 

 ∑
=

χ
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1n
exp
n
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n

sim
n

Y

)YY(

N
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R  (3.24) 

Yexp and Ysim being the experimental and simulated yields and N the total number 

of points. A series of macros are available for the Igor Pro [24] software package 

[25] to perform such comparisons. As there is no calibration of the data to give 

absolute yields, the experimental data must be empirically scaled to the 

simulation. Values of Rχ obtained are therefore purely relative and cannot be 

compared with those obtained from other data sets or other scattering geometries. 

A further discussion of R-factors, including some problems associated with Rχ, 

may be found in Chapter 5. 

References 

1. W. C. Turkenburg, W. Soszka, F. W. Saris, H. H. Kersten and B. G. 

Colenbrander, Nuc. Instrum. Meth. 132 587 (1976) 

2. R. M. Tromp, Medium Energy Ion Scattering, in Practical Surface 

Analysis, p. 577, D. Briggs & M. P. Seah, (Eds.) John Wiley & Sons 

(1992) 

3. J. F. van der Veen, Surf. Sci. Rep. 5 199 (1985) 

4. P. Quinn, D. Brown, D. P. Woodruff, T. C. Q. Noakes and P. Bailey, 

Surf. Sci. 491 208 (2001) 

5. P. Bailey, T. C. Q. Noakes and D. P. Woodruff, Surf. Sci. 426 358 (1999) 

6. D. Brown, T. C. Q. Noakes, D. P. Woodruff, P. Bailey and Y. Le 

Goaziou, J. Phys. Condens. Matter 11 1889 (1999) 



Chapter 3: Medium Energy Ion Scattering 

7. D. Brown, P. D. Quinn, D. P. Woodruff, T. C. Q. Noakes and P. Bailey, 

Surf. Sci. 497 1 (2002) 

8. P. Fenter and T. Gustafsson, Phys. Rev. B 38 10197 (1988) 

9. D. P. Woodruff, D. Brown, P. D. Quinn, T. C. Q. Noakes and P. Bailey, 

Nucl. Instrum. Meth. B 183 128 (2001) 

10. T. Yasue and T. Koshikawa, Surf. Sci. 377-379 923 (1997) 

11. M. Chester and T. Gustafsson, Surf. Sci. 256 135 (1991) 

12. M. Copel, T. Gustafsson, W. R. Graham and S. M. Yalisove, Phys. Rev. B 

33 8110 (1986) 

13. B. W. Busche and T. Gustafsson, Phys. Rev. B 61 16097 (2000) 

14. S. M. Yalisove, W. R. Graham, E. D. Adams, M. Copel and T. 

Gustafsson, Surf. Sci. 171 400 (1986) 

15. T. Nishimura, A. Ikeda, H. Namba and Y. Kido, Surf. Sci. 411 L834 

(1998) 

16. R. L. Headrick and W. R. Graham, Phys. Rev. B 37 1051 (1988) 

17. J. V. Barth and D. E. Fowler, Phys. Rev. B 55 1528 (1995) 

18. P. Haberle and T. Gustafsson, Phys. Rev. B 40 8218 (1989) 

19. J. W. M. Frenken, R. M. Tromp and J. F. van der Veen, Nucl. Instrum. 

Meth. B 17 334 (1986) 

20. I. Stensgaard, R. Feidenhans'l and J. E. Sorensen, Surf. Sci. 128 281 

(1983) 



Chapter 3: Medium Energy Ion Scattering 

21. R. M. Tromp and J. F. van der Veen, Surf. Sci. 133 159 (1983) 

22. VEGAS, FOM Institute 

23. J. H. Barrett, Phys. Rev. B 3 1527 (1973) 

24. Igor Pro, WaveMetrics Inc. 

25. Igor Pro MEIS Macros, P. Bailey, Daresbury MEIS Facility 


