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Abstract 

 

This work describes the study of RE/Si(111) (RE – rare earth) and Fe/Si(111) 

surfaces by means of medium energy ion scattering (MEIS), scanning tunnelling 

microscopy (STM) and scanning tunnelling spectroscopy (STS). 

The Tm/Si(111) surface has been studied by means of MEIS. Data has been 

obtained from the 1 × 1 surface reconstruction formed at monolayer rare earth 

coverage.  The data have been compared to simulations for a model based on the 

known structures of other RE silicides. The structure of the Tm silicide formed 

has been seen to fall into this class of structure. This investigation has led to a re-

evaluation of the determination of the structural parameters for this model. A 

trend in the structural parameters has been revealed across the rare earth series. 

The electronic structure of the rare earth silicide surface has been investigated. 

STS has been performed on the Ho silicide 1 × 1 surface. A lack of distinction 

between inequivalent sites has been observed and the data found to be in broad 

agreement with what is known of the electronic structure of these RE silicides. 

A MEIS investigation has been made of the initial growth of Fe on the Si(111) 

7 × 7 surface. Two phases have been found to form depending on anneal 

temperature. At anneal temperatures of around 300 ˚C a 1 × 1 phase is formed 

and at higher anneal temperatures a 2 × 2 phase is found. Data have been 

obtained from three scattering geometries. The data indicate that both phases are 

structurally very similar. A CsCl-type structural model is proposed, the 2 × 2 

phase being formed by a Si adatom overlayer. 

The use of the RE silicide as a growth template has also been briefly investigated 

by MEIS. The deposition of Fe onto the Ho silicide surface has been found to 

disrupt the structure and progressive annealing failed to reorder the system. 
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